

Self-powered AlGaN based Visible-Blind UV Detector with 2DEG and Graphene transporting layers

Dong Liu UW-Madison 2018-07-12

Introduction

- Photodetection of the deep ultraviolet (DUV) light free of environment noise.
 - Flame detection
 - Health and Environment monitoring (Ozone hole)
 - Advanced communication

A.F. McKinlay, et al. Health Phys., 87 (2) (2004), pp. 171-186

Design

- AlxGa1-xN (3.3 ~ 6.1 eV)
 - Epitaxial growth capability in wafer scale
 - Tunable bandgap
- Desired features for unattended and intelligent UV photodetectors
 - Self-powered
 - \rightarrow Intrinsic polarization field of Nitride group materials
 - High responsivity and large specific detectivity
 - → Graphene as transparent contact
 - Fast transient response
 - → highly conductive carrier transport layers (graphene for hole and 2DEG for electrons)
 - Spectrum selectivity

Devices

Photoresponse

Transient response

Comparison with state of art self-powered DUV PDs

Materials	structure	Detection wavelengt h peak	Rpeak/R40 0nm	Responsivit y (mA/w)	Detectivity (Jones)	Rise tim e/Decay time	Ref.
ZnO/Ga ₂ O ₃	Microwires	251 nm (U VC)	6.9×10 ²	9.7	6.3×10 ¹²	100 us/9 00 us	[4]
Au/Ga ₂ O ₃	Nanowire S chottky dio de	258 nm (UVC)	38	0.01	-	1 us/100 us	[7]
Polyaniline/ MgZnO	Thin film p -n junction	250 nm (UVC)	≈104	0.16	1.5×10 ¹¹	<0.3s/<0 .3s	[8]
p-GaN/Zn O	p-n diode	358 nm (UVA)	≈10	0.65	-	-	[5]
β- Ga2O3/Ga: ZnO	Thin film n-n heteroj unction	254 nm (UVC)	>10 ²	0.763	6.9×10 ²	179ms/2 72ms	[6]
AlGaN/AlN /GaN	Vertical epi taxy	279 nm (UVC)	1×10 ⁴	76	8.3 × 10 ¹¹	0.8ns/5n s	This work

- **Self-powered** detectors on the AIGaN/AIN/GaN employing the intrinsic polarization effect.
 - No external extraction field needed to collect the photocarriers with open voltage of 0.7V.
- Graphene and 2DEG as highly conductive carrier transport layer.
- UV/visible rejection ratio of 10⁴, and **fast response** at 0 bias.
- **Readily to be integrated** with matured AlGaN/GaN high electron mobility transistor (HEMT) devices epitaxial and fabrication.

Figure S3.

Figure S3. Camera Image of transparent graphene/AlGaN with embedded GaN 2DEG released and transferred on PET Film with bending radiu=18.5mm.